Mechanical amplification by hair cells in the semicircular canals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical amplification by hair cells in the semicircular canals.

Sensory hair cells are the essential mechanotransducers of the inner ear, responsible not only for the transduction of sound and motion stimuli but also, remarkably, for nanomechanical amplification of sensory stimuli. Here we show that semicircular canal hair cells generate a mechanical nonlinearity in vivo that increases sensitivity to angular motion by amplification at low stimulus strengths...

متن کامل

Semicircular Canals Circumvent Brownian Motion Overload of Mechanoreceptor Hair Cells

Vertebrate semicircular canals (SCC) first appeared in the vertebrates (i.e. ancestral fish) over 600 million years ago. In SCC the principal mechanoreceptors are hair cells, which as compared to cochlear hair cells are distinctly longer (70 vs. 7 μm), 10 times more compliant to bending (44 vs. 500 nN/m), and have a 100-fold higher tip displacement threshold (< 10 μm vs. <400 nm). We have devel...

متن کامل

Hair-cell versus afferent adaptation in the semicircular canals.

The time course and extent of adaptation in semicircular canal hair cells was compared to adaptation in primary afferent neurons for physiological stimuli in vivo to study the origins of the neural code transmitted to the brain. The oyster toadfish, Opsanus tau, was used as the experimental model. Afferent firing-rate adaptation followed a double-exponential time course in response to step cupu...

متن کامل

Mechanical AJ Hudspeth amplification of stimuli by hair cells

Unlike any other known sensory receptor, the hair cell uses positive feedback to augment the stimulus to which it responds. In the internal ears of many vertebrates, hair cells amplify the inputs to their mechanosensitive hair bundles. Outer hair cells of the mammalian cochlea display a unique form of somatal motility that may underlie their contribution to amplification. In other receptor orga...

متن کامل

Ionic currents in hair cells dissociated from frog semicircular canals after preconditioning under microgravity conditions.

The effects of microgravity on the biophysical properties of frog labyrinthine hair cells have been examined by analyzing calcium and potassium currents in isolated cells by the patch-clamp technique. The entire, anesthetized frog was exposed to vector-free gravity in a random positioning machine (RPM) and the functional modification induced on single hair cells, dissected from the crista ampul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2010

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.0906765107